Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.

Identifieur interne : 000084 ( Main/Exploration ); précédent : 000083; suivant : 000085

Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.

Auteurs : Lorenzo Cagnin [Italie] ; Lorenzo Favaro [Italie] ; Nicoletta Gronchi [Italie] ; Shaunita Hellouise Rose [Afrique du Sud] ; Marina Basaglia [Italie] ; Willem Heber Van Zyl [Afrique du Sud] ; Sergio Casella [Italie]

Source :

RBID : pubmed:30776068

Descripteurs français

English descriptors

Abstract

An engineered yeast producing all the cellulases needed for cellulose saccharification could produce ethanol from lignocellulose at a lower cost. This study aimed to express fungal β-glucosidases in Saccharomyces cerevisiae to convert cellobiose into ethanol. Furthermore, two engineering platforms (laboratory vs industrial strain) have been considered towards the successful deployment of the engineered yeast under simulated industrial conditions. The industrial S. cerevisiae M2n strain was engineered through the δ-integration of the β-glucosidase Pccbgl1 of Phanerochaete chrysosporium. The most efficient recombinant, M2n[pBKD2-Pccbgl1]-C1, was compared to the laboratory S. cerevisiae Y294[Pccbgl1] strain, expressing Pccbgl1 from episomal plasmids, in terms of cellobiose fermentation in a steam exploded sugarcane bagasse pre-hydrolysate. Saccharomyces cerevisiae Y294[Pccbgl1] was severely hampered by the pre-hydrolysate. The industrial M2n[pBKD2-Pccbgl1]-C1 could tolerate high inhibitors-loading in pre-hydrolysate under aerobic conditions. However, in oxygen limited environment, the engineered industrial strain displayed ethanol yield higher than the laboratory Y294[Pccbgl1] only when supplemented with supernatant containing further recombinant β-glucosidase. This study showed that the choice of the host strain is crucial to ensure bioethanol production from lignocellulose. A novel cellobiose-to-ethanol route has been developed and the recombinant industrial yeast could be a promising platform towards the future consolidated bioprocessing of lignocellulose into ethanol.

DOI: 10.1093/femsyr/foz018
PubMed: 30776068


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.</title>
<author>
<name sortKey="Cagnin, Lorenzo" sort="Cagnin, Lorenzo" uniqKey="Cagnin L" first="Lorenzo" last="Cagnin">Lorenzo Cagnin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Favaro, Lorenzo" sort="Favaro, Lorenzo" uniqKey="Favaro L" first="Lorenzo" last="Favaro">Lorenzo Favaro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gronchi, Nicoletta" sort="Gronchi, Nicoletta" uniqKey="Gronchi N" first="Nicoletta" last="Gronchi">Nicoletta Gronchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rose, Shaunita Hellouise" sort="Rose, Shaunita Hellouise" uniqKey="Rose S" first="Shaunita Hellouise" last="Rose">Shaunita Hellouise Rose</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch</wicri:regionArea>
<wicri:noRegion>Stellenbosch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Basaglia, Marina" sort="Basaglia, Marina" uniqKey="Basaglia M" first="Marina" last="Basaglia">Marina Basaglia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Zyl, Willem Heber" sort="Van Zyl, Willem Heber" uniqKey="Van Zyl W" first="Willem Heber" last="Van Zyl">Willem Heber Van Zyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch</wicri:regionArea>
<wicri:noRegion>Stellenbosch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Casella, Sergio" sort="Casella, Sergio" uniqKey="Casella S" first="Sergio" last="Casella">Sergio Casella</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30776068</idno>
<idno type="pmid">30776068</idno>
<idno type="doi">10.1093/femsyr/foz018</idno>
<idno type="wicri:Area/Main/Corpus">000079</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000079</idno>
<idno type="wicri:Area/Main/Curation">000079</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000079</idno>
<idno type="wicri:Area/Main/Exploration">000079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.</title>
<author>
<name sortKey="Cagnin, Lorenzo" sort="Cagnin, Lorenzo" uniqKey="Cagnin L" first="Lorenzo" last="Cagnin">Lorenzo Cagnin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Favaro, Lorenzo" sort="Favaro, Lorenzo" uniqKey="Favaro L" first="Lorenzo" last="Favaro">Lorenzo Favaro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gronchi, Nicoletta" sort="Gronchi, Nicoletta" uniqKey="Gronchi N" first="Nicoletta" last="Gronchi">Nicoletta Gronchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rose, Shaunita Hellouise" sort="Rose, Shaunita Hellouise" uniqKey="Rose S" first="Shaunita Hellouise" last="Rose">Shaunita Hellouise Rose</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch</wicri:regionArea>
<wicri:noRegion>Stellenbosch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Basaglia, Marina" sort="Basaglia, Marina" uniqKey="Basaglia M" first="Marina" last="Basaglia">Marina Basaglia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Zyl, Willem Heber" sort="Van Zyl, Willem Heber" uniqKey="Van Zyl W" first="Willem Heber" last="Van Zyl">Willem Heber Van Zyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch</wicri:regionArea>
<wicri:noRegion>Stellenbosch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Casella, Sergio" sort="Casella, Sergio" uniqKey="Casella S" first="Sergio" last="Casella">Sergio Casella</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD)</wicri:regionArea>
<wicri:noRegion>35020 Legnaro (PD)</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEMS yeast research</title>
<idno type="eISSN">1567-1364</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofuels (analysis)</term>
<term>Cellobiose (metabolism)</term>
<term>Cellulases (genetics)</term>
<term>Ethanol (analysis)</term>
<term>Fermentation (MeSH)</term>
<term>Industrial Microbiology (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Metabolic Engineering (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biocarburants (analyse)</term>
<term>Cellobiose (métabolisme)</term>
<term>Cellulases (génétique)</term>
<term>Fermentation (MeSH)</term>
<term>Génie métabolique (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Microbiologie industrielle (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Éthanol (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Biofuels</term>
<term>Ethanol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cellulases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellobiose</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Biocarburants</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cellulases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellobiose</term>
<term>Lignine</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fermentation</term>
<term>Industrial Microbiology</term>
<term>Metabolic Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fermentation</term>
<term>Génie métabolique</term>
<term>Microbiologie industrielle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An engineered yeast producing all the cellulases needed for cellulose saccharification could produce ethanol from lignocellulose at a lower cost. This study aimed to express fungal β-glucosidases in Saccharomyces cerevisiae to convert cellobiose into ethanol. Furthermore, two engineering platforms (laboratory vs industrial strain) have been considered towards the successful deployment of the engineered yeast under simulated industrial conditions. The industrial S. cerevisiae M2n strain was engineered through the δ-integration of the β-glucosidase Pccbgl1 of Phanerochaete chrysosporium. The most efficient recombinant, M2n[pBKD2-Pccbgl1]-C1, was compared to the laboratory S. cerevisiae Y294[Pccbgl1] strain, expressing Pccbgl1 from episomal plasmids, in terms of cellobiose fermentation in a steam exploded sugarcane bagasse pre-hydrolysate. Saccharomyces cerevisiae Y294[Pccbgl1] was severely hampered by the pre-hydrolysate. The industrial M2n[pBKD2-Pccbgl1]-C1 could tolerate high inhibitors-loading in pre-hydrolysate under aerobic conditions. However, in oxygen limited environment, the engineered industrial strain displayed ethanol yield higher than the laboratory Y294[Pccbgl1] only when supplemented with supernatant containing further recombinant β-glucosidase. This study showed that the choice of the host strain is crucial to ensure bioethanol production from lignocellulose. A novel cellobiose-to-ethanol route has been developed and the recombinant industrial yeast could be a promising platform towards the future consolidated bioprocessing of lignocellulose into ethanol.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30776068</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1567-1364</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>FEMS yeast research</Title>
<ISOAbbreviation>FEMS Yeast Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">foz018</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/femsyr/foz018</ELocationID>
<Abstract>
<AbstractText>An engineered yeast producing all the cellulases needed for cellulose saccharification could produce ethanol from lignocellulose at a lower cost. This study aimed to express fungal β-glucosidases in Saccharomyces cerevisiae to convert cellobiose into ethanol. Furthermore, two engineering platforms (laboratory vs industrial strain) have been considered towards the successful deployment of the engineered yeast under simulated industrial conditions. The industrial S. cerevisiae M2n strain was engineered through the δ-integration of the β-glucosidase Pccbgl1 of Phanerochaete chrysosporium. The most efficient recombinant, M2n[pBKD2-Pccbgl1]-C1, was compared to the laboratory S. cerevisiae Y294[Pccbgl1] strain, expressing Pccbgl1 from episomal plasmids, in terms of cellobiose fermentation in a steam exploded sugarcane bagasse pre-hydrolysate. Saccharomyces cerevisiae Y294[Pccbgl1] was severely hampered by the pre-hydrolysate. The industrial M2n[pBKD2-Pccbgl1]-C1 could tolerate high inhibitors-loading in pre-hydrolysate under aerobic conditions. However, in oxygen limited environment, the engineered industrial strain displayed ethanol yield higher than the laboratory Y294[Pccbgl1] only when supplemented with supernatant containing further recombinant β-glucosidase. This study showed that the choice of the host strain is crucial to ensure bioethanol production from lignocellulose. A novel cellobiose-to-ethanol route has been developed and the recombinant industrial yeast could be a promising platform towards the future consolidated bioprocessing of lignocellulose into ethanol.</AbstractText>
<CopyrightInformation>© FEMS 2019.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cagnin</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Favaro</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gronchi</LastName>
<ForeName>Nicoletta</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rose</LastName>
<ForeName>Shaunita Hellouise</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Basaglia</LastName>
<ForeName>Marina</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Zyl</LastName>
<ForeName>Willem Heber</ForeName>
<Initials>WH</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casella</LastName>
<ForeName>Sergio</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy Food Natural resources Animals and Enviroment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro (PD), Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEMS Yeast Res</MedlineTA>
<NlmUniqueID>101085384</NlmUniqueID>
<ISSNLinking>1567-1356</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>16462-44-5</RegistryNumber>
<NameOfSubstance UI="D002475">Cellobiose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D044602">Cellulases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002475" MajorTopicYN="N">Cellobiose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044602" MajorTopicYN="N">Cellulases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007218" MajorTopicYN="N">Industrial Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="Y">Metabolic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">bioethanol</Keyword>
<Keyword MajorTopicYN="Y">consolidated bioprocessing</Keyword>
<Keyword MajorTopicYN="Y">industrial yeast</Keyword>
<Keyword MajorTopicYN="Y">laboratory yeast</Keyword>
<Keyword MajorTopicYN="Y">sugarcane bagasse</Keyword>
<Keyword MajorTopicYN="Y">β-glucosidase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30776068</ArticleId>
<ArticleId IdType="pii">5333308</ArticleId>
<ArticleId IdType="doi">10.1093/femsyr/foz018</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Cagnin, Lorenzo" sort="Cagnin, Lorenzo" uniqKey="Cagnin L" first="Lorenzo" last="Cagnin">Lorenzo Cagnin</name>
</noRegion>
<name sortKey="Basaglia, Marina" sort="Basaglia, Marina" uniqKey="Basaglia M" first="Marina" last="Basaglia">Marina Basaglia</name>
<name sortKey="Casella, Sergio" sort="Casella, Sergio" uniqKey="Casella S" first="Sergio" last="Casella">Sergio Casella</name>
<name sortKey="Favaro, Lorenzo" sort="Favaro, Lorenzo" uniqKey="Favaro L" first="Lorenzo" last="Favaro">Lorenzo Favaro</name>
<name sortKey="Gronchi, Nicoletta" sort="Gronchi, Nicoletta" uniqKey="Gronchi N" first="Nicoletta" last="Gronchi">Nicoletta Gronchi</name>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Rose, Shaunita Hellouise" sort="Rose, Shaunita Hellouise" uniqKey="Rose S" first="Shaunita Hellouise" last="Rose">Shaunita Hellouise Rose</name>
</noRegion>
<name sortKey="Van Zyl, Willem Heber" sort="Van Zyl, Willem Heber" uniqKey="Van Zyl W" first="Willem Heber" last="Van Zyl">Willem Heber Van Zyl</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30776068
   |texte=   Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30776068" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020